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Abstract

In magnetized plasmas, a radial gradient of parallel velocity, where parallel refers

to the direction of magnetic field, can destabilise an electrostatic mode called Parallel

Velocity Gradient (PVG). The theory of PVG has been mainly developed assuming a

single species of ions. Here, the role of impurities is investigated based on a linear, local

analysis, in a homogeneous, constant magnetic field. To further simplify the analysis,

the plasma is assumed to contain only two ion species — main ions and one impurity

species — while our methodology can be straightforwardly extended to more species. In

the cold-ion limit, retaining polarization drift for both main ions and impurity ions, and

assuming Boltzmann electrons, the system is described by 4 fluid equations closed by

quasi-neutrality. The linearized equations can be reduced to 2 coupled equations: one

for the electric potential, and one for the effective parallel velocity fluctuations, which

is a linear combination of main ion and impurity parallel velocity fluctuations. This

reduced system can be understood as a generalisation of the Hasegawa-Mima model.

With finite radial gradient of impurity parallel flow, the linear dispersion relation then

describes a new instability: the impurity-modified PVG (i-PVG). Instability condition

is described in terms of either the main ion flow shear, or equivalently, an effective

flow shear, which combines main ion and impurity flow shears. Impurities can have

a stabilising or destabilising role, depending on the parameters, and in particular the

direction of main flow shear against impurity flow shear. Assuming a reasonable value

of perpendicular wavenumber, the maximum growth rate is estimated, depending on

impurity mass, charge, and concentration.
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1 Introduction

In magnetized plasmas, the Parallel Velocity Gradient (PVG), or Parallel Velocity Shear (PVS) is a type of

Kelvin-Helmholtz fluid instability driven by a radial gradient of parallel (to magnetic field) plasma flow. It

is sometimes referred to as D’Angelo instability, since D’Angelo investigated a simplified version (simplified

by a radial WKB approximation) for a low-temperature plasma in a uniform magnetic field [D’A65]. The

D’Angelo instability was then observed in basic plasma experiments [DG66, KTH03].

In toroidal magnetic confinement fusion devices, magnetic shear is stabilising [CRL73]. However, theory

indicates that PVG-driven turbulence may be found in the vicinity of transport barriers [McC02, GSG
+

02],

in the SOL [DHG
+

92], in the presence of strong parallel beam injection, and more readily in spherical

tokamaks [CBKW12, WER
+

15]. Even in cases where PVGs are weak, they can have important impact by

coupling with Ion-Temperature-Gradient (ITG) turbulence. Theory predicted subcritical ITG-PVG turbu-

lence [NCL10, BPH
+

11, SHC12, HSC
+

12], which is consistent with measurements (by Beam Emission Spec-

troscopy) on MAST [FDG
+

12]. Strong experimental hints, from fluctuation level and isotropy of correlation

length, indicate a significant contribution of PVG-driven turbulence in the edge of the CT-6B tokamak plasma

[WWY
+

98]. The universality of PVGs in tokamaks remains an open issue.

Parallel flows are also expected to play major roles in linear magnetized plasma devices, such as PANTA

(Plasma Assembly for Nonlinear Turbulence Analysis, formerly LMD), where an uphill, near-axis, axial parti-

cle flux [KIK
+

16] has been measured to be consistent with PVG/drift-waves coupling [IKK
+

16], with a regime

transition in quantitative agreement with the theoretical linear instability threshold [KII15].

Magnetic confinement fusion plasmas are often contaminated by ion species other than hydrogen isotopes,

which are then called as impurities. These can include helium, nitrogen, neon, argon, beryllium, carbon, and

tungsten. Linear magnetized plasma experiments can also include impurities. In particular, a new linear de-

vice, called SPEKTRE (Sheath, Plasma Edge & Kinetic Turbulence Radiofrequency Experiment) [BGH
+

23]

and currently under construction, is partly designed to inject various impurities in a controlled manner and

investigate their impact and their dynamics.
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Our objective here is to investigate the instability driven by a radial shear of the parallel flows of multiple

species, which we refer to as impurity-modified PVG (i-PVG). We consider experimental conditions that are

relevant to linear plasma experiments with cylindrical geometry such as PANTA and SPEKTRE, and are in-

sightful approximations of tokamak’s edge plasma, where the PVG instability is of its most significance. Our

local, linearized model can be understood as a modified Hasegawa-Mima model including equilibrium and

perturbed parallel velocities of both main ions and impurities.

In the case of slab geometry with weak magnetic shear, Guo obtained from gyrokinetic equations a linear

dispersion relation for PVG with impurities, showing the stabilization of the PVG instability by the presence

of impurities and by the increase of electron density gradient [GWZ19]. Here we adopt a fluid approach,

and investigate how the i-PVG threshold, frequency and growth rate depend on parameters such as impurity

charge, mass, concentration and parallel flow shear. We further assume a cold-ion limit to provide more clear

analysis of the i-PVG. Our fluid approach is supported by this cold ion assumption, plus by the fact that our

study focuses on the linear growth of the instabilities and ignores the damped states, so that kinetic effects

such as Landau damping can be neglected. Compared to Guo’s previous work, our approach provides a more

flexible analysis in terms of parameter scan for independent ion and impurity flow shears, and demonstrates

that the presence of impurity can be either stabilizing or destabilizing for PVG. The relationship between

linear properties and plasma parameters turns out to be somewhat complex, with several non-monotonous

dependencies.

2 Model

The model is based on a local approximation in a Cartesian basis (êx, êy , êz). The magnetic field is assumed

homogeneous and constant, B = Bêz . Hereafter, the parallel and perpendicular subscripts (∥ and ⊥) refer

to the direction of the magnetic field êz and the perpendicular plane (êx, êy). For each species s, both

equilibrium density gradient and equilibrium parallel velocity gradient are assumed constant and in the x
direction:

∇ns,0 =
ns,0

Ln,s
êx (1)

∇u∥,s,0 =
u∥,s,0

Lu,s
êx (2)

where Ln,s and Lu,s are the density gradient length and parallel velocity gradient length.

We assume for simplicity that the plasma contains only electrons (s = e) and two ion species (one main

ion species s = i, and one impurity species s = z), although the model can be straightforwardly generalized

to more species. For each species, mass is noted ms, and charge is noted qs = Zse, where e is the elementary

charge (Ze = −1 and, for simplicity, we assume that the main ions satisfy Zi = 1).

We adopt the cold ion limit, setting for the wave number an approximate maximum limit

√
Te/Ts/ρs,

with s = i and z, and ρc,s being the Larmor radius of species s. The perpendicular motion of ions (both main

ions and impurity ions) is dominated by E ×B drift,

uE =
E ×B

B2
(3)

and polarization drift,

up,s =
1

ωc,sB
B × duE

dt
=

1

ωc,sB

dE⊥
dt

(4)

This is valid up to first order in terms of the ratio between wave frequency and cyclotron frequency, ω/ωc,s.

Here, as verified a posteriori, ω/ωc,i remains as small as a few percent. However, since ωc,z/ωc,i = Zzmi/mz ,
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the model requires heavy impurities to be sufficiently ionized (unless these impurities are in high enough

concentration to bring ω down to small enough values).

These assumptions yield a system of four fluid equations. Namely, for each of s = i and z, the density

equation writes as

∂ns

∂t
+ ∇⊥ · [ns(uE + up,s)] + ∇∥(nsu∥,s) = 0 (5)

and the parallel flow equation writes as

∂u∥,s

∂t
+ (uE + up,s) ·∇⊥u∥,s + u∥,s∇∥u∥,s = − qs

ms
∇∥ϕ (6)

Assuming that electron density ne responds to electrostatic fluctuations ϕ according to a Boltzmann distri-

bution, the system of equations is closed by quasi-neutrality,∑
s ̸=e

Zsns = ne = n0 exp

(
eϕ

Te

)
(7)

where Te is the temperature.

3 Linear analysis

To obtain the linear dispersion relation, densities and parallel velocities are split into equilibrium and fluctu-

ation parts, ns = ns,0 + ñs and u∥,s = u∥,s0 + ũ∥,s. Then, Eqs. (5)-(7) are linearized,

∂ñs

∂t
+ uE ·∇⊥ns,0 + ns,0∇⊥ ·up,s + ns0∇∥ũ∥,s = 0 (8)

∂tũ∥,s + uE ·∇⊥u∥,s,0 = − qs
ms

∇∥ϕ (9)

∑
s ̸=e

Zsñs = ne,0
eϕ

Te
(10)

Here we used the assumption of homogeneous magnetic field to remove the term in ∇·uE . In addition, we

neglected four terms which remain small for typical plasma parameters:

1. The termup,s ·∇⊥ns,0 is of orderω/ωc,s compared touE ·∇⊥ns,0. Note that, compared tons,0∇⊥ ·up,s,

it is of order kx/(k
2
⊥Ln), which, as verified a posteriori, remains much smaller than unity as long as

ρc,i/Ln ≪ 1.

2. Similarly, the term up,s ·∇⊥u∥,s,0 is of order ω/ωc,s compared to uE ·∇⊥u∥,s,0.

3. The term u∥,s0∇∥ñs, compared to ∂ñs/∂t, is of order k∥u∥,s0/ω, which must remain small to avoid

strong Landau damping. Note that, compared to uE ·∇⊥ns,0, it is of order (Ti/Te)M
2
s , where Ms =

u∥,s0/vT,i is the Mach number for species s. To obtain the latter ordering, we substituted k∥ by

∇u∥
2ωc

ky
(which provides the strongest instability, cf Eq. (20) for justification), and assumed that for each species,

density and parallel gradient lengths are comparable. Extension of this theory for plasmas where the

condition M2
s ≪ Te/Ti is not satisfied, is left for future work, as accounting for the term u∥,s0∇∥ñs

expands a parameter space that is already very large.
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4. Similarly, the term u∥,s0∇∥ũ∥,s, compared to ∂ũ∥,s/∂t, is of order k∥u∥,s0/ω.

A linear combination reduces the system Eqs. (8)-(10) to two coupled equations, on the effective variables

Φ = eϕ/Te =
∑

Zsñs/ne,0 and ˜̄u∥ =
∑

ZsCsũ∥,s, where Cs = ns,0/ne,0 is the equilibrium concentration

of species s. The two coupled equations write

∂t
(
1− ρ̄2∇2

⊥
)
Φ + v∗,e ∂yΦ + ∇∥ ˜̄u∥ = 0 (11)

∂t ˜̄u∥ − ∇u∥ ρc,ivT,i ∂yΦ = −c2s∇∥Φ (12)

where

ρ2 =
∑
s ̸=e

CsZ
2
sρ

2
c,s (13)

is a linear combination of ion Larmor radii, v∗,e = Te/(eBLn,e) is the electron diamagnetic drift velocity, cs
is the ion-acoustic velocity including the contribution of impurities,

c2s =
∑
s ̸=e

Cs Z
2
s

Te

ms
(14)

(recalling we adopt the cold ion limit), and, most importantly,

∇u∥ =
∑
s ̸=e

Cs Zs∇u∥,s,0 (15)

is a linear combination of main ion and impurity parallel velocity gradients, which we refer to as the effective
flow shear. It is the source of free-energy of the i-PVG instability. Note that throughout this paper, we note

the radial gradient (∂/∂x) as ∇ (without a subscript). Let us define the ratio of parallel velocity gradients,

V = ∇u∥,z,0/∇u∥,i,0. Then the effective flow shear can also be written as ∇u∥ = (Ci + V CZ ZZ)∇u∥,i,0.

The above model can in fact be seen as a modification of the Hasegawa-Mima model, including the ef-

fective flow shear. This analogy is however limited to the linear regime: a similar linear combination on the

system Eqs. (5)-(7) would not yield a comparable effective description of the instability at the non-linear level.

However, the nonlinear evolution of a i-PVG wave packet interacting with mesoscale fluctuations (such as

convective cells, zonal flows, streamers) can be investigated by modulational analysis [KBLO24].

Fourier analysis yields the dispersion relation,

ω2 − ωiDW ω −
(
k∥cs

)2
1 + (k⊥ρ)

2

(
1− ky

k∥

∇u∥

ωc

)
= 0 (16)

where

ωiDW =
ky v∗,e

1 + (k⊥ρ)
2 (17)

is the drift-wave frequency modified by impurities, and

ωc =
∑
s ̸=e

Cs Zs ωc,s (18)

is a linear combination of main ion and impurity cyclotron frequencies.
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The quadratic Eq. (16) includes an unstable solution if and only if the function

∆(k∥) =
(ωiDW

2

)2
+

(
k∥cs

)2
1 + (k⊥ρ)

2

(
1− ky

k∥

∇u∥

ωc

)
(19)

is negative.

When the parallel wave number is k∥ = k∥,max, with

k∥,max =
∇u∥

2ωc
ky (20)

the function ∆ reaches its minimum value

∆min =
(ωiDW

2

)2 (
1 − L2

n,e (1 + k2⊥ρ̄
2)

∇u∥
2

cs2

)
(21)

Therefore, the linear instability condition can be written in terms of the effective flow shear,

∣∣∇u∥
∣∣ > ∇u∥cr

with

∇u∥
2

cr
=

(cs/Ln,e)
2

1 + (k⊥ρ)
2 (22)

or, alternatively, in terms of the main ion flow shear,

∣∣∇u∥,i,0
∣∣ > ∇ui,cr with

∇ui,cr =
1

Ci + V CZ ZZ
∇u∥cr (23)

When an i-PVG wave is unstable, its frequency is ωiDW/2 and its growth rate is γ =
√
−∆ (∆ is then

negative). These expressions are given in Eqs. (17) and (19). Note that the factor 2 in the frequency is mainly

due to the finite value of k∥ – the i-PVG frequency does recover the impurity-modified drift-wave frequency

in the limit of k∥ = 0 and ∇u∥ = 0.

For a given set of plasma parameters and a given value of k⊥, the maximum growth rate is reached for

kx = 0 and k∥ = k∥,max(ky), in which case

γmax =
k⊥ v∗,e/2

1 + k2⊥ρ̄
2

[
L2
n,e (1 + k2⊥ρ̄

2)
∇u∥

2

c2s
− 1

]1/2
(24)

Hereafter we focus on that case kx = 0, which is also more consistent with our local model.

4 Application to typical plasmas

For concision, let us note M = mz/mi the mass ratio, and V = ∇u∥,z,0/∇u∥,i,0 the ratio of parallel velocity

gradients. Table 1 shows the parameters of a reference case, designed to be representative of a fusion plasma

with highly ionized tungsten. The values ∇u∥,i,0 and V = 2 are consistent with measurements [TGF
+

02,

GCH
+

19]. Hereafter, we present analyses of cases which are variations of this reference case. The varying

parameters are summarized in Table 2.
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Ln/ρc,i ∇u∥,i,0/ωc,i V M Z Cz ρc,ikx ρc,iky ρc,ik∥
Reference case 10 0.1 2 184 40 10−3

0 0.7 ρc,ik∥,max

Table 1: Input parameters for the reference case.

∇u∥,i,0/ωc,i V M Z Cz ρc,iky ρc,ik∥
Fig. 1 0.1 2 12 and 184 6 and 40 0 and 10−3

0.7 -0.02 – 0.08

Fig. 2 0.1 2 184 40 10−3
-1 – 1 -0.1 – 0.1

Fig. 3 0.1 2 12 and 184 6 and 40 0 and 10−3
0 – 2 ρc,ik∥,max

Fig. 4 - 2 0 – 200 0 – 200 10−3
0.7 ρc,ik∥,max

Fig. 5 0.1 -1 – 2 5 – 200 5 10−4
– 10−2

0.7 ρc,ik∥,max

Fig. 6 0.1 -1 – 2 184 0 – 50 10−4
– 10−2

0.7 ρc,ik∥,max

Fig. 7 0.1 -1 – 2 12 – 184 3 – 40 10−5
– 10−2

0.7 ρc,ik∥,max

Fig. 8 0.08 2 12 and 184 6 and 40 0 and 10−3
0 – 2 ρc,ik∥,max

Fig. 9 0.08 2 0 – 200 0 – 200 10−3
0.7 ρc,ik∥,max

Fig. 10 0.08 -1 – 2 5 – 200 5 10−4
– 10−2

0.7 ρc,ik∥,max

Fig. 11 0.08 -1 – 2 184 0 – 50 10−4
– 10−2

0.7 ρc,ik∥,max

Fig. 12 0.08 -1 – 2 12 – 184 3 – 40 10−5
– 10−2

0.7 ρc,ik∥,max

Table 2: Input parameters for each figure. This table includes only parameters which vary compared to the reference case. In other
words, for all figures, Ln/ρc,i = 10 and kx = 0.

4.1 Dispersion relation

Figure 1 shows the dispersion relation for the reference case, as well as for C
6+

(M = 12 and Z = 6) impurity.

The dispersion relation of the pure PVG is included for comparison. We observe that the dispersion relation

is qualitatively similar for the pure and impure cases, but quantitatively different. As demonstrated hereafter,

differences are more important closer to the PVG instability threshold, or for higher impurity concentrations.

Let us now verify both the accuracy of the assumptions (i)–(iv) described in Sec. 3, and the correctness of

our linear analysis. We developed an initial value numerical simulation code to solve the fluid model Eqs. (5-

7), which does not rely on the assumptions (i)–(iv). Time integration is performed by an explicit RK4 scheme

with time-step width ∆t = 10−2ω−1
c,i . All quantities (ϕ, ns, u∥,s) are described in Fourier space (kx, ky)

on a 256x256 grid for a fixed k∥. Nonlinear terms such as ns u∥,s are computed in real space before being

transformed back to Fourier space. Fig. 1 includes the frequency and growth rate extracted from time-traces

of complex Fourier component of ϕ, during the linear phase. There is good quantitative agreement for the

values of k∥ such that the growth rate is close to its maximum – the relative error for the growth rate remains

below 0.2% for the range γ/ωc,i > 0.014. The relative error can be as high as a few percent in the range

0.004 < γ/ωc,i < 0.007 or a few tens of percent in the range γ/ωc,i < 0.004, but these weak modes are

negligible in the linear phase of the instability. The relative error for the frequency remains below 0.5% for

the whole unstable range.

Figure 2 shows the linear growth rate in the space of wavevector components (k∥, ky). The asymmetry in

this space, instability occurring only for ky k∥ > 0 (for ∇u∥ > 0), is an important property of the i-PVG. If

the sign of ∇u∥ was flipped, the unstable region would be in the region ky k∥ < 0. As expected, growth rate

is maximum for k∥ = k∥,max. Hereafter, we always set k∥ = k∥,max.
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Figure 1: Dispersion relation of the i-PVG: frequency and growth rate against parallel wavenumber, for the reference case ("High-Z
Tgst"), as well as a case with C6+ impurity ("High-Z Carb"). The dispersion relation of the pure PVG is included for comparison. The
curves for the pure PVG are almost hidden behind the curves for the C6+ impurity. The cross and plus symbols correspond to linear
frequency and growth rate measured in an initial value simulation of the fluid model Eqs. (5-7).

Figure 2: Growth rate against parallel and azimuthal wavenumbers, for the reference case. The dashed black line represents the
condition k∥ = k∥,max. The white curve is the instability threshold.

Figure 3 displays the maximum growth rate (obtained for k∥ = k∥,max) against the azimuthal ky wavenum-

ber, as well as the corresponding frequency. Our model does not include any mechanism for small scale dissi-
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pation. As a consequence, γmax spuriously keeps on increasing for increasing ky . However, our model looses

its validity as ρc,ik approaches unity. With the knowledge of the typical shape of γmax(k) obtained from more

complete models for many instabilities, let us approximate the physical maximum growth rate by choosing a

cut-off at ρc,ik = 0.7 as a first, qualitative approach. Then, for our reference case, the maximum growth rate

is γmax ∼ 0.02ωci.

Figure 3: Dispersion relation of the i-PVG: frequency and growth rate against the azimuthal wavenumber ky , for the reference
case ("High-Z Tgst"), as well as a case with C6+ impurity ("High-Z Carb"). The dispersion relation of the pure PVG is included for
comparison. The curves for the pure PVG are almost hidden behind the curves for the C6+ impurity.

In summary, the results in this section confirm that the linear properties of the i-PVG instability are qual-

itatively the same as that of the pure PVG instability. For the chosen set of parameters, even the quantitative

differences are small. However, that is for a case where the pure PVG instability is already quite strong, since

γ ≈ ω. In this sense, the above results concern a range far from instability threshold. By contrast, in the next

section we focus on the instability threshold itself.

4.2 Critical ionic PVG

As explained in Sec. 3, for a given set of parameters (Ln, ∇u∥,i,0, V , M , Z , Cz), and bounded value of ky ,

the i-PVG instability threshold can be expressed either in terms of the effective flow shear, which is a com-

bination of main ion and impurity flow shears, or, alternatively, in terms of the main ion flow shear alone.

The corresponding thresholds are given by Eqs. (22) and (23), respectively. The preferred point-of-view may

depend on the experimental conditions which determine preferred control parameters. Here we focus on the

second point-of-view, that of critical main ion flow shear for a given ratio V .

Figure 4 displays the critical main ion flow shear against mass and charge ratios, forV = 2 andCz = 10−3
.

It is clear that i-PVG-unstable conditions are more readily reached when the impurity is massive and highly

ionized. In realistic machines however, radiation from high-mass and high-Z impurities is a severe issue, so

that the applicability of such ranges of parameters should be carefully studied. On the contrary, at this low

concentration, the threshold for low-mass, low-charge impurities is not so different from the threshold for

high-mass, low-charge impurities, and is actually close to the threshold of the pure PVG.

Open Plasma Science 1, No.1 (2024) 9 | 17
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Figure 4: Critical main ion flow shear against mass and charge ratios.

Figure 5 illustrates the role of the mass ratio, at fixed Z = 5, for various impurity concentrations Cz and

various flow shear ratios V . The critical main ion flow shear is always decreasing with increasing mass ratio,

but the relationship is nonlinear. Here the impact of V is small, but that is because Cz and Z are both low,

such that the i-PVG is actually very close to the pure PVG.

Figure 5: Critical main ion flow shear against mass ratio, for Z = 5. Left: fixed V = 2 and various concentrations. Right: fixed
Cz = 10−3 and various V .

Figure 6 illustrates the role of the charge number Z of the impurity, at fixed mass ratio M = 184 (tung-

sten), for various impurity concentrations Cz and various flow shear ratios V . Higher Z can be either sta-

bilising or destabilising depending on the parameters, such as V . Here, at concentration Cz = 10−3
, it is

stabilising for V = 2, but destabilising for V = 0.5 and V = −1. This stabilising role of impurities is consis-

tent with simple intuition in the case V = −1, since impurity flow counteracts main ion flow in this case. In

the case V = 0.5, the stabilising effect is more subtle: in this case the variation in Eq. (23) is dominated by the

denominator (Ci + V CZZ), which can be re-written as [1 +ZCZ(V − 1)]. However, which term dominates

Open Plasma Science 1, No.1 (2024) 10 | 17
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depends on the value of V . For example, for V = 1, the variation as Z increases is dominated by the decrease

of cs, so increasing Z is stabilising. For an intermediate case, V = 0.8, the dependency is non-monotonous:

increasing Z is stabilising for Z < 28 and destabilising for Z ≥ 28.

Figure 6: Critical main ion flow shear against charge number Z , for M = 184. Left: fixed V = 2 and various concentrations.
Right: fixed Cz = 10−3 and various V .

A more intuitive picture can be obtained by varying impurity concentration while the impurity species

and Z are fixed. Figure 7 illustrates the role of impurity concentration, for various impurity species (C
3+

,

C
6+

, W
5+

, W
40+

) and various values of V . From this point of view, the role of impurity flow is consistent

with simple intuition: if V > 0, impurity flow adds up to main ion flow, which is destabilising; conversely, if

V < 0, impurity flow counters main ion flow, which is stabilising. Increasing concentration accentuates the

impact – whether stabilising or destabilising – of the impurity on the instability threshold. This effect may

offer new means of control of the PVG instability by impurity injection.

Figure 7: Critical main ion flow shear against impurity concentration. Left: fixed V = 2 and various species. Right: various V and
the impurity is W40+.

In summary, the critical main ion flow shear decreases non-linearly with increasing mass ratio, and may

increase or decrease in a non-trivial manner depending on all the other parameters.
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For our reference case, the instability threshold is ∇ui,cr = 0.075925ωc,i. In the next subsection, in order

to study the growth rate near the instability threshold, we arbitrarily fix ∇u∥,i,0 = 0.08ωc,i.

4.3 Growth rate

Figure 8 displays the maximum growth rate (obtained for k∥ = k∥,max) against the azimuthal ky wavenumber,

as well as the corresponding frequency, for ∇u∥,i,0 = 0.08ωc,i. Here, for ky < 0.75 ρ−1
c,i , the main ion parallel

velocity shear is below the threshold for pure PVG. As a consequence, the behavior is qualitatively different

compared to Fig. 1 (which is for ∇u∥,i,0 = 0.1ωc,i, above the pure PVG threshold even for ky → 0). There is

now an additional bifurcation.

Figure 8: Dispersion relation of the i-PVG: frequency and growth rate against azimuthal wavenumber, for the reference case, as
well as a case with C6+ impurity ("High-Z Carb") – same as Fig. 1 but for lower ∇u∥,i,0 = 0.08ωc,i. The dispersion relation of the
pure PVG is included for comparison. The curves for the pure PVG are almost hidden behind the curves for the C6+ impurity.

Again, let us approximate the physical maximum growth rate by fixing ρc,ik = 0.7. Then, for our plasma

with W 40+
, the maximum growth rate is γmax ∼ 0.008ωc,i. Consistently, the maximum growth rate in the

following figures (9, 10, 11 and 12), where impurity parameters are varied, is obtained from our model for the

wave vector kmax with components kx = 0, ky = 0.7/ρc,i, k∥ = k∥,max.

Figure 9 shows our estimated maximum growth rate against mass and charge ratios, for V = 2 and

Cz = 10−3
. Recalling that the real frequency of the mode is typically ω ≈ 0.02ωc,i, we confirm that our

choice of cut-off (ρc,ik = 0.7) ensures that γmax/ω remains significantly below unity, except for unrealistically

highly ionized heavy impurities. Note that here, the main ion parallel velocity shear is below the threshold

for pure PVG (which is 0.08192ωc,i for ky = 0.7 ρ−1
c,i ).

Figure 10 illustrates the role of the mass ratio on the maximum growth rate, for fixed Z = 5 and various

Cz and V . From this perspective, the instability threshold can be viewed as a threshold in impurity mass,

every other parameters being fixed. Similarly to the effect of mass on the instability threshold, increasing

mass always increases the maximum growth rate.
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Figure 9: Maximum growth rate against mass and charge ratios, for ∇u∥,i,0 = 0.08ωc,i.

Figure 10: Maximum growth rate against mass ratio, for ∇u∥,i,0 = 0.08ωc,i and Z = 5. Left: fixed V = 2 and various Cz . Right:
fixed Cz = 10−3 and various V .

Figure 11 illustrates the role of the impurity charge on the maximum growth rate, for fixed M = 184 and

various Cz and V . As a rule of thumb, the growth rate is less sensitive to Z than to M . Increasing Z may be

destabilising or stabilising depending on the parameters, and in particular depending on the flow shear ratio

V . For V = 0.5 or V = −1, the i-PVG instability threshold can be viewed as a threshold in impurity charge,

instability occurring only below a critical number.

Figure 12 illustrates the role of impurity concentration on the maximum growth rate, for various species

and V . In this point-of-view, the instability threshold is a threshold in concentration. With our arbitrary

choice of ∇u∥,i,0 = 0.08ωc,i = 1.05∇ui,cr, the concentration threshold is of the order of 10−4
– 10−3

for

tungsten, and of the order of 10−3
– 10−2

for carbon. However, with∇u∥,i,0 closer to∇ui,cr, the concentration

threshold can even be much lower. Here, the growth rate increases with increasing concentration. However,

there are also cases where concentration has a non-monotonous impact [LBK23].
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Figure 11: Maximum growth rate against impurity charge, for ∇u∥,i,0 = 0.08ωc,i and M = 184. Left: fixed V = 2 and various
concentrations. Right: fixed Cz = 10−3 and various V .

Figure 12: Maximum growth rate against impurity concentration. Left: fixed V = 2 and various species. Right: various V and the
impurity is W40+.

Let us emphasize that figures 11 and 12 are useful to guide experiments which could test this theory. For

example, impurities may be purposely injected in a linear device, to either excite the i-PVG, or to suppress

a pure PVG (depending on the direction of flow shears). However, the analysis should be reproduced after

measuring the values of parallel flows, since the thresholds in Z and CZ are sensitive to the value of the main

ion flow shear – and more specifically its closeness to marginal stability.

5 Conclusions and discussions

We investigated the role of a radial gradient of the parallel flow of impurities in a magnetized plasma. The

linear dispersion relation indicates that the impurity-PVG is destabilised when L2
n,e∇u∥

2
> c2s/[1 + (k⊥ρ)

2].
Similarly to the pure-PVG, the i-PVG is asymmetric in the space of wavevector components (k∥, ky): it is

unstable only for ky k∥∇u∥ > 0.

If the plasma is unstable to the pure-PVG, then impurities can be stabilising if their flow shear is opposite to

the flow shear of main ions. Note that this does not require flows themselves to be in opposite directions. The
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role of impurities is more prominent for higher mass and/or higher charge number. In general, the instability

threshold and the growth rate are more sensitive to charge number than to mass.

The analytic expression of the maximum growth rate is given in Eq. (24). To investigate how the max-

imum growth rate depends on plasma and impurity parameters (Figs. 10-12), we assumed a perpendicular

wavenumber comparable to the inverse Larmor radius (of main ions).

In the typical case of a hydrogen plasma with a 10−3
concentration of W 40+

, tungsten flow shear being

twice the hydrogen flow shear, and assuming that the linear growth rate is maximum for k⊥ ≈ 0.7 ρ−1
c,i , the

i-PVG instability is unstable for hydrogen flow shear above a threshold ∇ui,cr ≈ 0.076ωc,i, and most unstable

for parallel wavenumbers k∥ ≈ 0.04 ρ−1
c,i .

Although the present work should in principle capture the main linear properties of the i-PVG, the reader

should keep in mind that it is subject to several caveats: it is a local analysis, assuming cold ions and Boltzmann

electrons. Our model does not include collisional effects, viscosity, resistivity. We limited our analysis to two

species, but it can be straightforwardly generalised to more species.

The present work focused on the linear properties of the i-PVG. Although, the (quasi-)steady-state spec-

trum of fluctuations may roughly reflect the location in k-space of most unstable modes, nonlinear simula-

tions and analysis are necessary to improve predictions and understanding of steady-state fluctuations. In

particular, the present work cannot address the role of zonal flows, which can be generated by PVGs [KII17].

Impurities may play an interesting role in both the generation and the damping of zonal flows.

Impurities are transported in the radial direction, in general by both neoclassical and turbulent processes,

although one process may dominate depending on the species and plasma parameters. The efficiency of

fusion depends on the radial distribution of impurities, which results from transport. For example, slight

tungsten contamination of the core yields prohibitive energy losses. Therefore, it is essential to improve

our understanding of impurity transport. However, the model adopted here assumes a Boltzmann response

of electrons to electric fluctuations, which precludes any radial transport of electrons. Quasi-neutrality then

forces impurity particle transport to exactly balance main ion particle transport. This assumption is reasonable

for the present linear analysis, but is too strong for providing any conclusion about impurity particle transport.

The relaxation of this assumption is left for future work. In addition, we recall that our model assumes cold

ions, which precludes us from making any similar statement about heat transport.
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